If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+4y-3=0
a = 2; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·2·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*2}=\frac{-4-2\sqrt{10}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*2}=\frac{-4+2\sqrt{10}}{4} $
| 145/5=(x+8)➗5 | | -5r+5=-50 | | x=24.4*2+56 | | 1/e=1/4 | | 2(4x-4)=5x+3x-8 | | -5(2x-4)+4x=7x-4 | | 6y+6y=12y | | 41-w=205 | | -8+n/3=-6 | | 7(6-x)/6=-x | | 12u-9+7u=26 | | 2(2x-1)=46 | | 3y+11=11y+15 | | 2x+59=609 | | -22.4=x/6-3.2 | | -4(3x-5)+9=-12x+29 | | 2x-59=609 | | h-(3.01+2.30=5 | | 1+4(h-5)=13 | | 90x=11-140(2-x) | | (3x+20)(x-6)=0 | | 7x-22=90 | | 11=90x+140(2-x) | | 11=90x | | -15+19k=20k | | 3x2−75=0 | | 41/4=2/3z | | b+172=-1 | | (2x+7)(4x-5)=0 | | -17g+5g=-12 | | x=140(2-x) | | 3(2)^(x-2)+5=6.5 |